

ACVATIX™

Intelligent Valve - Control valve with integrated energy measurement

EVG.., EVF.

Intelligent Valve – control valve with integrated energy data acquisition for ventilation and air conditioning plants as well as precontrol circuits. Sensor-guided dynamic flow control.

- Threaded valves EVG4U10E...:
 - DN 15...50
 - Nominal volume flow 1.5...18 m³/h
 - Externally threaded connection per ISO-228
- Flanged valves EVF4U20E...:
 - DN 65…125
 - Nominal volume flow 30...120 m³/h
 - Flange connection per ISO 7005-1
- System integration in building control technology over BACnet IP
- System integration in building automation and control over Modbus RTU
- Supports the direct transfer to Siemens Building Operator
- Ultrasonic volume flow measurement at measuring accuracy ± 2 %
- Temperature measurement with paired immersion temperature sensors

The Intelligent Valve is a 2-port pressure-independent control valve (PICV) with volume flow, temperature and power measurement for heating, ventilation, and air conditioning plants.

The valve can be integrated as analog (DC 0/2...10 V or 4...20 mA) or digital (BACnet IP / Modbus RTU) into the temperature control circuit. All process data (volume flow, power, primary flow and return temperature, etc.) can still be read out digitally even if integrated as analog.

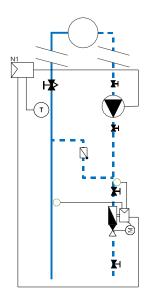
The Intelligent Valve also has local limitation and optimization functions that support energyefficient plant operation.

In addition to digital integration in the building automation and control system, integration in the cloud with the Siemens Building Operator app supports the building operator to operate and monitor the system as well as evaluate energy consumption.

The Intelligent Valve 4 control functions:

- Dynamic control valve
- Differential pressure controller
- Flow temperature controller
- Outside temperature-dependent flow temperature controller

Volume flow limitation and energy acquisition are available at any time in all 4 control functions.

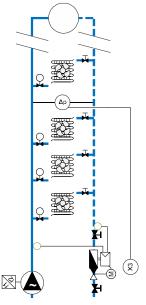

Intelligent Valve as dynamic control valve

In this control function, the Intelligent Valve is part of a temperature control circuit and receives a setpoint from a superposed automation station that it interprets, depending on the control mode, as valve position, volume flow, or output and controls accordingly.

The example to the right depicts this based on a precontrol circuit for chilled ceilings.

Automation station [N1] controls the flow temperature of the chilled ceiling circuit by demand and specifies the setpoint of 0...100 % on the Intelligent Valve. This can occur in analog $(0...100 \% = DC \ 0...10 \ V)$ form or else remotely over BACnet IP or Modbus RTU.

The Intelligent Valve follows this setpoint and sets, for example in volume flow control mode, the appropriate volume flow.



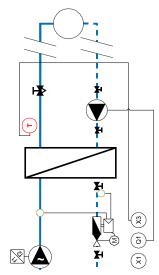
Intelligent Valve as differential pressure controller

The Intelligent Valve can act as a differential pressure controller for a section of the plant.

In this control function, the Intelligent Valve controls independently of an automation station. Using an auxiliary differential pressure sensor [X3], it acquires the present differential pressure in the plant section and adjusts the valve position resulting in a constant differential pressure. In this control function, the Intelligent Valve does not receive

an external setpoint, but rather controls to a fixed local setpoint that the user sets with ABT Go.

Intelligent Valve as flow temperature controller without outside air temperature sensor


In this control function, the Intelligent Valve assumes the role of the automation station.

Using an auxiliary secondary flow temperature sensor [X3], it acquires the flow temperature and controls to the present temperature setpoint by adjusting the volume flow.

Possible sensor types at [X3] are passive sensors with sensing elements LG-Ni-1000, DIN-Ni-1000 or Pt1000 (385/EU).

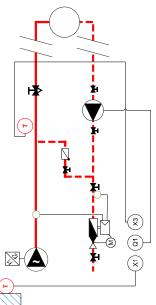
The temperature setpoint can be preset externally via BACnet IP and Modbus RTU or analog at [X1] (0...10 V = 0...100 °C).

The secondary pump is released by relais [Q1] as soon as the setpoint for secondary flow temperature is > 0 °C.

Intelligent Valve as outside temperature-dependent flow temperature controller

The Intelligent Valve can control the valve in a heating group to a flow temperature based on the outside temperature. In this control function, the Intelligent Valve assumes the role of the automation station.

In outside temperature-dependent control, the flow temperature [X3] is assigned to the prevailing outside air temperature [X1] via the heating curve.


Possible sensor types at [X3] are passive sensors with sensing elements LG-Ni-1000, DIN-Ni-1000 or Pt1000 (385/EU), or active sensors (0...10 V = -50...50 °C).

The secondary flow temperature sensor [X3] acquires the present flow temperature and the Intelligent Valve controls it to the determined flow temperature setpoint by adjusting the volume flow.

Possible sensor types at [X3] are passive sensors with sensing elements LG-Ni-1000, DIN-Ni-1000 or Pt1000 (385/EU).

In addition to the heating curve, a weekly timeswitch can also preset the room operating mode (Comfort, Pre-Comfort, Economy, Protection).

The heating curve and the weekly scheduler are set in ABT Go. The heating circuit pump can be released or locked with relay [Q1].

Basic design

The Intelligent Valve combines four main functions:

- Exact, continuous volume flow measurement with an ultrasonic flow sensor
- Precise temperature measurement using paired Pt1000 temperature sensors
- Precise volume control using a control valve with a high-resolution actuator
- Dynamic hydraulic balancing, power and energy calculations, storage of cumulated flow and energy data as well as network integration via a central control unit

EVG4U10E					EVF4U20E
	1	-	e sensor pair otective pockets)	1	
	2	Ultrasonic f	flow sensor	2	
	3	 Sensor inter Dynamic vol Power and e measureme Heat exchar 	lume flow control energy nt nger optimized cumulated flow and	3	
	4	Flow sensor/v	valve interface	-	
	5	Flow con	trol valve	4	
		Ball valve	Globe valve		
	6	High-resolut	tion actuator	5	

Volume flow is acquired continuously in the ultrasonic flow sensor and provided to the Intelligent Valve controller, where the controller applies it as the actual value for control or limitation by guiding the control valve position until the volume flow actual value for the applicable setpoint is achieved.

Control modes as dynamic control valve

The Intelligent Valve supports 3 control modes in this control function:

- Volume flow control
- Position control
- Output control

Volume flow limitation is active on all control modes!

Volume flow control

In the basic configuration, the Intelligent Valve operates as an electronic PICV (*pressure-independent control valve*). This control mode is referred to as volume flow control. The positioning signal is proportional to the volume flow to be controlled (setpoint 0 % = closed; setpoint 100 % = \dot{V}_{100}). The setpoint range reflects new limit values (setpoint 0 % = \dot{V}_{min} , setpoint 100 % = \dot{V}_{max}), if volume flow limitation (\dot{V}_{min} and/or \dot{V}_{max}) is activated. In volume flow control, the flow characteristic curve can be adapted to the heat exchanger's transfer behavior.

3 characteristic curves are available:

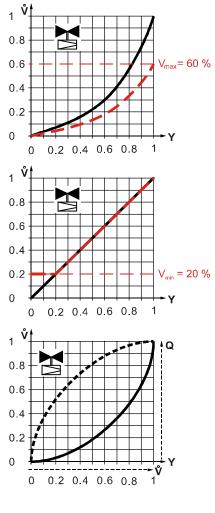
Equal percentage, optimized in the opening range (factory setting)

Recommended for heating and cooling registers, where the transfer characteristic is unknown.

Modified characteristic curve with volume flow maximum limitation at 60 %

Linear

Recommended for plate heat exchangers water/water or injection circuits in precontrol circuits.


__: Cut characteristic at the volume flow minimum limitation

Heat exchanger optimized

Recommended for heating and cooling registers, where the transfer characteristic (a-value) is known.

----: Q = f(V) Heat exchanger characteristic

.....:: V = f(Y) Flow characteristic for Intelligent Valve

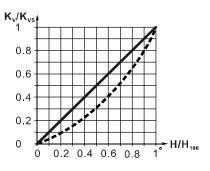
 $[\]dot{V}$ = Volume flow \dot{V} / \dot{V} 100

Y = Positioning signal

Q = Heating output

In the event of volume flow maximum limitation, the curve always adapts to the entered limitation setpoint (example for equal percentage curve).

During volume flow minimum limitation, the characteristic is cut off below the minimum flow (example for a linear characteristic curve).


Position control

The control valve position is proportional to the setpoint (setpoint 0 % = closed; setpoint 100 % = H₁₀₀) – whereby the limitation to the applicable maximum volume flow (\dot{V}_{100} or \dot{V}_{max}) remains active.

Dynamic volume flow control is inactive in position control mode and the $k_{\rm VS}$ valve characteristic curve is not electronically modified.

The k_{VS} value characteristic curve is derived by combining the control value or control ball value characteristic and the resistance characteristic of the flow sensor.

This results in an equal percentage k_{VS} valve characteristic curve with a ngl 2.2 for valves with a threaded connection EVG.. (_____); the k_{VS} valve characteristic curve for flanged valves EVF.. is nearly linear (_____).

Output control

The design output is the reference variable. It is defined by:

- Design volume flow V_{max}
- Design temperatures T_{VL, design} and T_{RL, design}

Design output = c × design volume flow × difference of the design temperatures

 $\dot{Q}_{\text{design}} \sim \dot{V}_{\text{max}} \times (T_{\text{VL, design}} - T_{\text{RL, design}})$

whereby \dot{Q}_{max} is the output limitation in %, relating to the design output of the consumption (heat exchanger/precontrol circuit).

The setpoint for the output for control is interpreted by referencing the output limitation – (Y = 0...100 % \dot{Q}_{max} ; 0 % = closed; 100 % = \dot{Q}_{max}),

The "Sizing" section provides a table of the output values for water at typical temperature differences (Sizing as dynamic control valve $[\rightarrow 8]$).

The volume flow maximum limitation (\dot{V}_{100} or \dot{V}_{max}) also remains active in the output control mode. In output control, the dynamic volume flow control is inactive, since any undesired change in volume flow automatically results in a change in output, which is controlled anyway.

The flow characteristic curve is not relevant to output control.

Operating limits

Nominal volume flow and minimum required differential pressure

The Intelligent Valve has, as does any dynamic PICV, a nominal flow \dot{V}_{100} by build design that may not be exceeded during operation. A minimum differential pressure (Δp_{min}) is required to achieve nominal volume flow; it is calculated from the Intelligent Valve k_{vs} value. In contrast to mechanical PICVs, the electronic volume flow control on the Intelligent Valve remains active below the minimum differential pressure – so that the network is always optimally balanced.

The Intelligent Valve supports different limitation functions:

- Volume flow maximum limitation
- Volume flow minimum limitation
- Output maximum limitation
- Return temperature min./max. limitation
- ΔT-limitation limitation of the difference between the flow and return temperature

Volume flow maximum limitation

We recommend activating the volume flow maximum limitation if the design volume flow for the partial plant (heating coil/cooler/precontrol circuit) as controlled by the Intelligent Valve, is lower than the nominal flow of the Intelligent Valve. In volume flow control mode, the set volume flow \dot{V}_{max} – which can be anywhere between 30...100 % of the nominal volume flow – is interpreted as the 100 % setpoint. It only serves as the limitation value in the other control modes.

Volume flow minimum limitation

The volume flow minimum limitation achieves a minimum flow through the controlled partial plant where this appears to be appropriate. The limitation is of course pressure independent so that there is no over or under-supply as the local differential pressure changes.

Output maximum limitation

In contrast to volume flow limitation, the output limitation adapts dynamically to the temperature distribution in the plant. As a consequence, output control is more suitable for critical users than volume flow limitation.

Return temperature min./max. limitation

Modern, high-efficiency output generators must have sufficient low/high return temperatures to achieve their output numbers/degree of efficiency. With Intelligent Valve, you can precisely limit the return temperature value as needed by the given plant.

A return temperature maximum limitation is available if the Intelligent Valve is used in a heating application; a return temperature minimum limitation is available in a cooling application.

The setting is made in two steps:

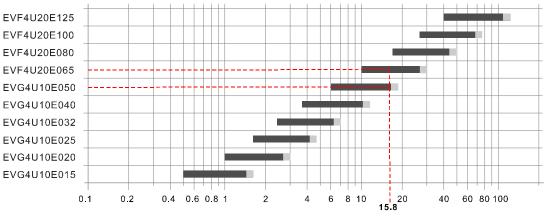
- 1. Enable the function
- 2. Set the limitation setpoint
 - Factory setting for maximum limitation = 40 °C; setting range = 0...100 °C
 - Factory setting for minimum limitation = 10 °C; setting range = 0...100 °C

ΔT-limitation

In system where the flow temperature cannot be maintained at a constant level – for example due high swings in load or insufficient generation capacity – limiting the difference between the flow and return temperature is an alternative to absolute return temperature limitation. ΔT -limitation ensures that the consumer is not supplied with more output than the consumer can process.

The setting is made in two steps:

- 1. Enable the function
- 2. Set the limitation setpoint
 - Factory setting ∆T-limitation = 6 °C; setting range = 0...40 °C


Not all limitations are available to each control mode. The following limitations are available based on control mode:

	Dyna	mic control v	/alve	Differential	Flow	Outside		
	Position control	Volume flow control	Output control	pressure controller	temperature controller	temperature- dependent heating circuit		
Setpoint	External		External Internal		External	Internal		
Volume flow maximum limitation		Always active						
Volume flow minimum limitation			S	electable				
Output maximum limitation	-		Always active		-			
Return temperature limitation	Selectable - Selectable							
ΔT-limitation	Selectable			-	Selectable	-		

Sizing as dynamic control valve

As a pressure-independent solution, it is generally easy to size the Intelligent Valve. If the volume flow is already a known variable, simply select the corresponding valve from the diagram below. The electronic volume flow controller ensures that the valves always achieve the specific nominal volume flow. The nominal volume flow cannot however be exceeded.

We recommend selecting the valves so that the maximum volume flow \dot{V}_{max} must be preset to a value of 30...90 %. Just in case that a somewhat higher volume flow is required during installation than was originally calculated.

Volume flow V [m³/h]

Recommended design range that permits a subsequent increase in volume flow during the installation phase = 30...90 % of \dot{V}_{100}

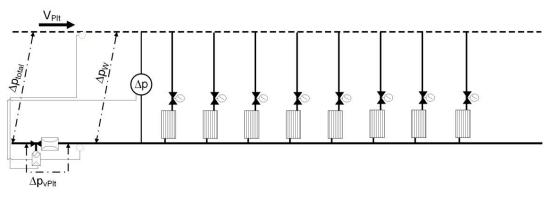
Maximum design range with no reserve to increase the volume flow = 90...100 % of V₁₀₀

Example	
Required volume flow V _{max}	Intelligent Valve selection
15.8 m³/h	EVG4U10E050: $\dot{V}_{100} = 18 \text{ m}^3/\text{h} \implies \dot{V}_{max} = 88 \%$
	$\label{eq:event} EVF4U20E065: \dot{V}_{100} = 30 \ m^3/h \qquad \Rightarrow \dot{V}_{max} = 53 \ \%$

Maximum consumer output range at typical temperature differences:

Туре	Stock number	DN	V ₁₀₀	Q [kW] at					
			[m³/h]	ΔΤ 6 Κ	ΔΤ 10 Κ	ΔΤ 15 Κ	ΔΤ 20 Κ		
EVG4U10E015	S55300-M100	15	1.5	10.4	17.4	26.1	34.5		
EVG4U10E020	S55300-M101	20	3	20.9	34.8	52	70		
EVG4U10E025	S55300-M102	25	4.5	31.3	52	78	104		
EVG4U10E032	S55300-M103	32	7	49	81	122	162		
EVG4U10E040	S55300-M104	40	11.5	80	133	200	267		
EVG4U10E050	S55300-M105	50	18	125	209	313	418		
EVF4U20E065	S55300-M106	65	30	209	348	522	696		
EVF4U20E080	S55300-M107	80	48	334	557	835	1114		
EVF4U20E100	S55300-M108	100	75	522	870	1305	1740		
EVF4U20E125	S55300-M109	125	120	835	1392	2088	2784		

Sizing as flow temperature controller


As a rule, the output for transmission in this control function is available at the indicated primary design temperatures as design variables.

This information can be used to calculate the required plant design volume flow which then influences the valve selection. See Engineering examples [\rightarrow 9].

Sizing as differential pressure controller

4 design parameters are required to design as differential pressure controller:

- 1. The differential pressure Δp_w to control; it may be between 25...120 kPa.
- 2. The minimum pending total differential pressure $\Delta p_{\text{total, min}}$
- 3. The maximum pending total differential pressure $\Delta p_{\text{total, max}}$
- 4. The design flow \dot{V}_{Plt} for the section of the plant controlled by the Intelligent Valve

Δp_{total} = Available plant differential pressure

 \dot{V}_{Plt} = Design volume flow to control the partial plant

 Δp_w = Required differential pressure to control the partial plant

 Δp_{VPlt} = Available differential pressure for the Intelligent Valve

In an initial step, the minimum differential pressure available to the Intelligent Valve is calculated:

 $\Delta p_{\text{VPIt}} = \Delta p_{\text{total, min}} - \Delta p_{w}$

The minimum required k_V value for the Intelligent Valve can be determined using the Δp_{VPlt} and the design flow \dot{V}_{Plt} :

 $min k_v = \dot{V}_{Plt} / \sqrt{(\Delta p_{VPlt})}$

Select the valve with the next higher k_{VS} value from the Type summary [\rightarrow 12].

Engineering examples

Intelligent Valve as dynamic control valve or flow temperature controller

Calculation basis

- 1. Determination of heating or cooling demand Q [kW]
- 2. Determination of temperature difference ΔT [K]
- 3. Calculation of volume flow $\dot{V}[m^3/h] = \frac{Q[kW] \times 3600[s]}{Q[kW] \times 3600[s]}$

 $4190[kJ/kgK] \times \Delta T[K]$

4. Select the suitable Intelligent Valve EV..

Example

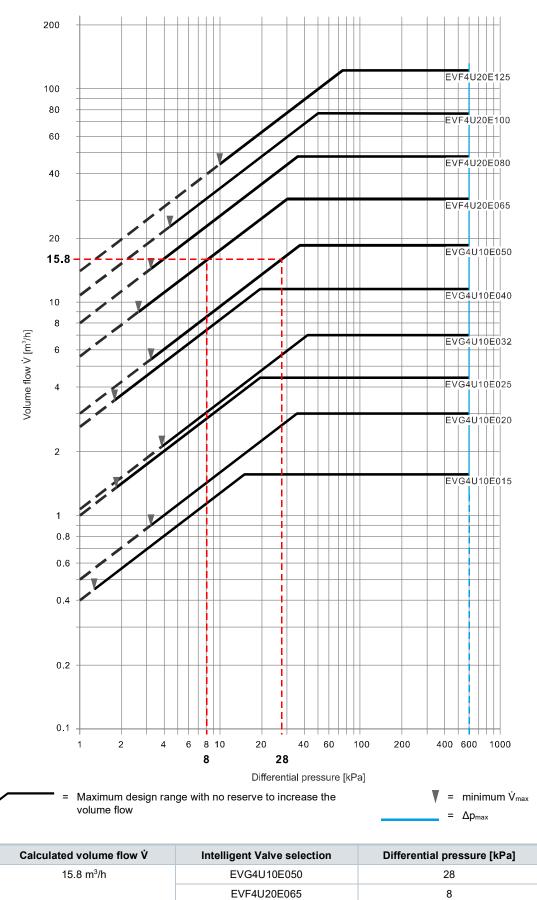
1.	Heating/cooling power	Q = 110 kW		
2.	Temperature difference	ΔΤ = 6 Κ		
3.	Volume flow $\dot{V}[m^3/h] = \frac{110 \text{ kW} \times 3600 \text{ s}}{4190 \text{ kJ/kgK} \times 6 \text{ K}} = 15.8 \text{ m}^3/h$ Note: You can use the valve slider to deter			
4.	 Select EV Select the Intelligent Valve to operate at 90% of the nominal volume flow to allow for higher heating or co output as needed. 			
	Selection:	EVG4U10E050		
		Δp _{min} = 28 kPa		
		EVF4U20E065		
		Δp _{min} = 8 kPa		
5.	Evaluate presetting			
	EVG4U10E050: 15.8 / 18 = 88 %	Optimum selection		

Intelligent Valve as differential pressure controller

Calculation basis

- 1. Determination of the minimum available differential pressure for the Intelligent Valve min Δp_{VPlt} [kPa]
- 2. Determination of the plant flow $\dot{V}_{Plt}[m^3/h]$
- 3. Calculation of the minimum required k_V value

$$mink_{v}[m^{3}/h] = \frac{\dot{V}_{plt}[m^{3}/h]}{\sqrt{min\Delta p_{vplt}[bar]}}$$


4. Select a suitable Intelligent Valve EV ..: kvs > min kv

Example

1.	Required plant differential pressure	Δp _w = 35 kPa (0.35 bar)				
	Available minimum total differential pressure	Δp _{total, min} = 50 kPa (0.5 bar)				
	Minimum available differential pressure for the Intelligent Valve	<i>min</i> Δp _{VPlt} = 50 – 35 = 15 kPa (0.15 bar)				
2.	Plant flow	V॑ _{Plt} = 16m³/h				
3.	Required minimum k _V value $mink_v[m^3/h] = \frac{16 \text{ m}^3/h}{\sqrt{0.15 \text{ bar}}} = 41.3 \text{ m}^3/h$					
4.	 Select EV Select an Intelligent Valve with a minimum k_{vs} of 41.3 m³/h. This ensures that a required volume flow 16 m³/h can be supplied even at the minimum available differential pressure. 					
	Selection:	EVF4U20E065 $k_{VS} = 55 \text{ m}^3/\text{h}$ Δp_{V100} at 16 m ³ /h = 8.5 kPa				
5.	Evaluate presetting					
	EVF4U20E065: 16 / 30 = 53 %	Optimum selection				

Sizing diagram

You can rely on the k_{vs} value under Type summary (page Type summary [\rightarrow 12]) to determine the pressure drop at the requested maximum volume flow.

Threaded Intelligent Valve EVG4U10E..

Туре	Stock number	DN	V ₁₀₀	<i>min</i> V _{max}	Δp _{V100}	Δp _{V50}	Δp _{max}	Δps	ps	k vs		
			[m³	/ h]			[kPa]			[m³ / h]		
EVG4U10E015	S55300-M100	15	1.5	0.45	14	4						4
EVG4U10E020	S55300-M101	20	3	0.9	36	9		1400		5		
EVG4U10E025	S55300-M102	25	4.5	1.35	20	5	600 ¹⁾		1600	10		
EVG4U10E032	S55300-M103	32	7	2.1	40	10	600 **	1000	1600	11		
EVG4U10E040	S55300-M104	40	11.5	3.45	20	5		800		26		
EVG4U10E050	S55300-M105	50	50 18	5.4	36	9		600		30		
			Operating voltage		tioning gnal	Positio tim		Fail-sa functio				
EVG4U10E015	S55300-M100											
EVG4U10E020	S55300-M101											
EVG4U10E025	S55300-M102				10 V							
EVG4U10E032	S55300-M103	AC	: / DC 24 \	24 V DC 21 420 r		90	90 s					
EVG4U10E040	S55300-M104			72	-0 11/1							
EVG4U10E050	S55300-M105											

Flanged Intelligent Valve EVF4U20E..

Туре	Stock number	DN	V ₁₀₀	<i>min</i> V _{max}	Δp _{V100}	Δp _{V50}	Δp _{max}	Δps	ps	k _{vs}	
			[m³	/ h]			[kPa]			[m³ / h]	
EVF4U20E065	S55300-M106	65	30	9	30	7				1500	55
EVF4U20E080	S55300-M107	80	48	14.4	36	9	600 ¹⁾		1200	80	
EVF4U20E100	S55300-M108	100	75	22.5	44	11		600 ¹⁾ 1600	1600	113	
EVF4U20E125	S55300-M109	125	120	36	71	18			1000	142	
			Operating				tioning Positioning gnal time		•	Fail-sa functi	
	055000 14400		voltage	31	Jiai	, un	•	Tuneti	011		
EVF4U20E065	S55300-M106	_			40.14	30 s					
EVF4U20E080	S55300-M107				10 V	0					
EVF4U20E100	S55300-M108	AC	/ DC 24 \			120 s					
EVF4U20E125	S55300-M109			42		120	5				

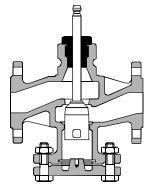
DN = Nominal size

 \dot{V}_{100} = Volume flow through a fully open valve

- *min*V_{max} = The smallest possible preset volume flow through a fully open valve
- $\label{eq:pv100} \begin{array}{lll} \Delta p_{V100} & = & Required minimum differential pressure to \\ guarantee nominal flow \dot{V}_{100} \end{array}$
- Δp_{V50} = Pressure over the fully opened value at 50 % of nominal flow
- Δp_{max} = Maximum permissible differential pressure over the valve control path, valid for the entire positioning range of the valve-actuator unit
- Δps
 =
 Maximum permissible differential pressure (closing pressure) at which the valve-actuator unit securely closes against the pressure
- ps = Permissible operational pressure
- k_{VS} = Nominal flow value for cold water (5...30 °C) through a fully opened valve at a differential pressure of 100 kPa (1 bar)

- ¹⁾ The maximum permissible differential pressure of 600 kPa requires some safety measures:
 - The volume flow limitation to V₁₀₀ must always be adhered to, even in manual operation.
 - Flushing with 600 kPa and a completely open valve is not permitted. During flushing, the ball valve must be positioned at 50 % or less; or the flow sensor is to be replaced by a spacer during flushing.
 - Cavitation must be avoided: the static pressure downstream of the valve must be at least as high as the differential pressure.

Cavitation

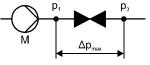

p₁ v

p,

Due to high speeds of the medium in the narrowest part of the valve, local negative pressure occurs (p_2). If this pressure drops below the medium's boiling pressure, cavitation occurs (steam bubbles), possibly leading to material removal (abrasion). Also, when cavitation sets in, the noise level increases abruptly. Cavitation can be avoided by limiting the pressure differential across the valve depending on the medium temperature and the prepressure.

p.

 p_2



Progression of speed

Progression of pressure

- Δp_{max} = Differential pressure with valve almost fully closed at which cavitation can largely be avoided
- p₁ = Static pressure at valve inlet
- p₃ = Static pressure at valve outlet
- M = Pump
- θ = Water temperature

Scope of delivery

The Intelligent Valve is supplied as a complete set consisting of:

EVG Threaded	EVF Flanged		
Intelligent	Valve controller		
A	tuator		
Flow section (control valve and flow sensor are	Flow sensor		
preinstalled)	Control valve		
Temperature sensor pair for direct installation (order protective pockets separately)	Temperature sensor pair including protective pockets		

The devices are supplied without fittings, mating flange, and gaskets. Welding sleeves, e.g. WZT-G12, for protective pockets must be ordered separately!

Accessories/spare parts

Accessories

Туре	Stock number	Description				
EZT-M40	S55845-Z231	Protective pockets, brass, for DN 1550	DN 65125 include protective pockets!			
EZU-WA	S55845-Z234	Wall mount for Intelligent Valve controller	At high media temperatures (>90°C)			
EZU-WB	S55845-Z236	Spacers for Intelligent Valve controller	For risk of condensation due to low media temperatures			
EZU10-10060	S55845-Z237	Immersion temperature sensor pair Pt1000	PLØ 6 x 105 mm, cable length 6 m			
ALX15	S55845-Z174	Filter with internal threading, DN 15				
ALX20	S55845-Z175	Filter with internal threading, DN 20	Filter			
ALX25	S55845-Z176	Filter with internal threading, DN 25				
ALX32	S55845-Z177	Filter with internal threading, DN 32	Filter			
ALX40	S55845-Z178	Filter with internal threading, DN 40				
ALX50	S55845-Z179	Filter with internal threading, DN 50				
QAC22	<u>.</u>	LG-Ni1000 outdoor sensor	Temperature sensor for the control			
QAD22		Strap-on temperature sensor LG-Ni1000	functions Flow temperature control			
QAE2120		Immersion temperature sensor LG-Ni1000, with protective pocket	Outside temperature-dependent flow control			
QBE3000-D1.6	S55720-S174	Differential pressure sensor for	01.6 bar			
QBE3000-D2.5	S55720-S175	liquids and gases (010 V) for the control function	02.5 bar			
QBE3000-D4	S55720-S176	Differential pressure control	04 bar			

Spare parts

Туре	Stock number	Description
ASE4U10E	S55845-Z205	Intelligent Valve controller for PICVs, series EVG4U and EVF4U
AVG4E015VAG	S55845-Z223	Control valve section PN 16 (control ball valve + flow sensor premounted) for Intelligent Valve EVG41.E015, DN 15 with threaded connection, k_{vs} 4 m^3/h
AVG4E020VAG	S55845-Z224	Control valve section PN 16 (control ball valve + flow sensor premounted) for Intelligent Valve EVG41.E020, DN 20 with threaded connection, k_{vs} 5 m^3/h
AVG4E025VAG	S55845-Z225	Control valve section PN 16 (control ball valve + flow sensor premounted) for Intelligent Valve EVG41.E025, DN 25 with threaded connection, k_{vs} 10 m ³ /h
AVG4E032VAG	S55845-Z226	Control valve section PN 16 (control ball valve + flow sensor premounted) for Intelligent Valve EVG41.E032, DN 32 with threaded connection, k_{vs} 11 m^3/h
AVG4E040VAG	S55845-Z227	Control valve section PN 16 (control ball valve + flow sensor premounted) for Intelligent Valve EVG41.E040, DN 40 with threaded connection, k_{vs} 26 m ³ /h
AVG4E050VAG	S55845-Z228	Control valve section PN 16 (control ball valve + flow sensor premounted) for Intelligent Valve EVG41.E050, DN 50 with threaded connection, k_{vs} 30 m^3/h
AVF4E065	S55845-Z213	Ultrasonic flow sensor for Intelligent Valve DN 65 mounting length 300 mm, flanged DN 65, PN 16
AVF4E080	S55845-Z214	Ultrasonic flow sensor for Intelligent Valve DN 80 mounting length 300 mm, flanged DN 80, PN 16
AVF4E100	S55845-Z215	Ultrasonic flow sensor for Intelligent Valve DN 100 mounting length 360 mm, flanged DN 100, PN 16
AVF4E125	S55845-Z216	Ultrasonic flow sensor for Intelligent Valve DN 125 mounting length 360 mm, flanged DN 100, PN 16
ALF4E065	S55845-Z218	Control valve mounting set PN16 for Intelligent Valve DN 65 (EVF42E065), flanged
ALF4E080	S55845-Z219	Control valve mounting set PN16 for Intelligent Valve DN 80 (EVF42E080), flanged
ALF4E100	S55845-Z220	Control valve mounting set PN16 for Intelligent Valve DN 100 (EVF42E100), flanged
ALF4E125	S55845-Z221	Control valve mounting set PN16 for Intelligent Valve DN 125 (EVF42E125), flanged
EZU10-2615	S55845-Z229	Temperature sensor pair Pt1000, DS M10x1, Ø 5.2 x 26 mm, cable length 1.5 m
EZU10-10025	S55845-Z230	Temperature sensor pair Pt1000, PL Ø 6 x 105 mm, cable length 2.5 m
EZT-S100	S55845-Z232	Protective pocket G $^{1\!\!/_2}$ B", G $^{1\!\!/_3}$ B", stainless steel, Ø 6.2 x 92.5 mm, for temperature sensors Ø 6 x 105 mm
VVF42.65KC ¹⁾	S55204-V182	Pressure compensated control globe valve DN 65, PN16, flanged for Intelligent Valve EVF4U20E65, $k_{\rm VS}63$
VVF42.80KC ¹⁾	S55204-V183	Pressure compensated control globe valve DN 80, PN16, flanged for Intelligent Valve EVF4U20E80, $k_{\rm VS}$ 100
VVF42.100KC ¹⁾	S55204-V184	Pressure compensated control globe valve DN 100, PN16, flanged for Intelligent Valve EVF4U20E100, $k_{\rm VS}$ 160
VVF42.125KC ¹⁾	S55204-V185	Pressure compensated control globe valve DN 125, PN16, flanged for Intelligent Valve EVF4U20E125, $k_{\rm VS}$ 200
GLA161.9E/HR	S55499-D444	Rotary actuator for ball valves, AC/DC 24 V, 10 Nm, NSR, modulating 010 V Highly accurate positioning signal, only for use with Intelligent Valve EVG4U10E
SAX61.03/HR	S55150-A142	Valve actuator 800 N, 20 mm stroke, AC/DC 24 V, modulating 010 V Highly accurate positioning signal, only for use with Intelligent Valve EVF4U20E, DN 65 and DN 80
SAV61.00/HR	S55150-A146	Valve actuator 1600 N, 40 mm stroke, AC/DC 24 V, modulating 010 V Highly accurate positioning signal, only for use with Intelligent Valve EVF4U20E, DN 100 and DN 125

¹⁾ Only available as spare part for EVF4U20E..

Title	Content		Document ID		
Intelligent Valve - Control valve with integrated energy data acquisition	Data sheet: Product description EVG, EVF				
Rotary actuators for ball valves in combination with the Intelligent Valve controller	Data sheet: Product description GLA161.9E/HR	A6V11418678			
Electromotive actuators in combination with the Intelligent Valve controller	Data sheet: Product description SAX61.03/HR, SAV61.00/HR	Product description SAX61.03/HR,			
Actuators SAX, SAY, SAV, SAL for valves					
EVG/EXG/EVF/EXF	Mounting instructions		A6V11449479		
GLA161.9E/HR	Mounting instructions		A6V11418688		
AVG4VAG, AVG4VBG	Mounting instructions		A6V11449852		
AVF4	Mounting instructions		A6V11478285		
Intelligent Valve – Commissioning with ABT Go	Commissioning instructions: Step-by-step description to configure a commission with ABT Go	A6V11422293			
Intelligent Valve – Engineering/Commissioning in Desigo	Engineering instructions: Step-by-step description of integration Desigo PX plants	in	A6V11572317		
Intelligent Valve – Modbus Registers	Description of Modbus registers for Int Valve	elligent	A6V12547886		
Intelligent Valve – BACnet Objects	List of BACnet objects for Intelligent Va	A6V11757108			
Intelligent Valve – Onboarding in Building Operator	Engineering instructions: Step-by-step description of integration Siemens Building Operator	A6V11999683			
Readme OSS "Intelligent Valve"	OSS document	V1.2	A6V11676101		
	Open source software components, copyrights, licensing agreements	V2.0	A6V12343374		

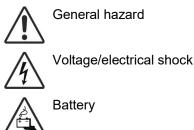
Related documents such as environmental declarations, CE declarations, etc., can be downloaded at the following Internet address: <u>http://siemens.com/bt/download</u>

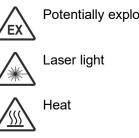
Notes

Safety notes

Comply with the following safety notes to protect life, limb, and property. The safety notes in the document include the following elements:

- Symbol for hazard
- Signal word
- Type and source of hazard
- Consequences in the event the hazard occurs
- Measures or prohibitions to prevent the hazard


Symbol for hazard



This is the symbol for hazard. It warns you of **Risks of injury**. Comply with all measures designated by this symbol to prevent injury or death.

Additional hazard symbols

These symbols indicate general hazards, type of hazard, possible consequences, measures and prohibitions, a sample of which is displayed in the following table:

Potentially explosive atmospheres

Signal word

The signal word classifies the hazard as defined in the following table:

Signal word	Danger level
DANGER	'DANGER' identifies a dangerous situation, that results directly in death or serious injuries , if you do not avoid this situation.
WARNING	'WARNING' identifies a dangerous situation, that can result in death or serious injuries , if you do not avoid this situation.
CAUTION	'CAUTION' identifies a dangerous situation, that can result in minor or moderate injuries , if you do not avoid this situation.
Note	' <i>NOTE</i> ' identifies a possible situation that may cause damage if not observed. ' <i>NOTE</i> ' does not reference possible injury.

Depiction of risk of injury

Notes on risk of injury is depicted as follows:

WARNING

A

Type and source of hazard

Consequences in the event the hazard occurs

Measures/prohibitions to prevent the hazard •

DEPICTION for possible damage to property

Notes on possible damage to property is depicted as follows:

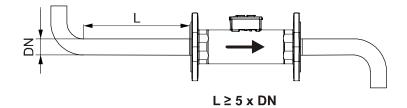
!	NOTICE		
	Type and source of hazard		
	Consequences in the event the hazard occurs		
	Measures/prohibitions to prevent the hazard		

 National safety regulations Failure to comply with national safety regulations may result in personal injury and property damage. Observe national provisions and comply with the appropriate safety regulations.

Qualified personnel

!	NOTICE		
	Qualified personnel!		
	Improper installation may override safety measures that a lay person may not recognize.		
	 Specialized knowledge of heating and air conditioning plants is required for installation. Only properly trained personnel may install the equipment. Prevent access to lay persons, especially children. 		

Only persons who can reasonably be expected to reliably conduct the work may actually perform the tasks. Do not permit persons whose reactions may be impaired, for example, by drugs, alcohol, or medications to perform the tasks.


Heating specialist

Heating specialists are persons who are capable of performing the mechanical work on heating and air conditioning plants and to independently recognize and avoid hazards due to their technical training, knowledge and experience as well as their knowledge of applicable standards and regulations.

Heating specialists are specially trained for the work environment where they are active and know the relevant standards and regulations.

Engineering

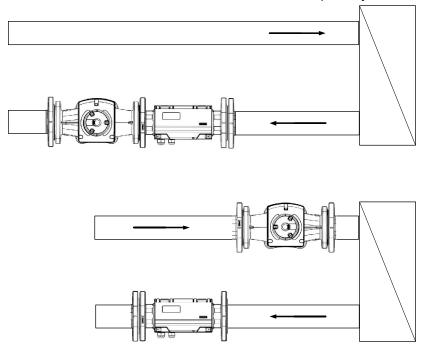
An unhindered inlet section of $L \ge 5 \times DN$ must be maintained upstream of the flow sensor to guarantee the indicated measurement and control accuracy.

Valve	Symbol / flow direction	Flow in control mode		Valve stem	
	EVG / EVF	Input	Output	SAX / SAV: Retracts	SAX / SAV: Extends
				GLA: Clockwise rotation	GLA: Counterclockwise rotation
Intelligent Valve	Flow direction	Vari	able	Closes	Opens

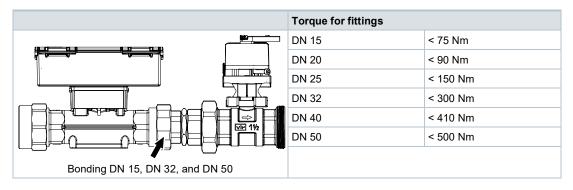
i

The indicated flow direction (arrow on the flow sensor and valve body) must be correct; the Intelligent Valve cannot otherwise be operated!

Do not install it at the highest point on the partial plant since air bubbles may otherwise collect in the flow meter.

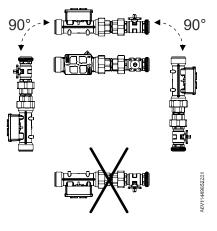

The rule is: Measure first, then control – in other words, the flow sensor must always be mounted upstream of the control valve in a compact installation.

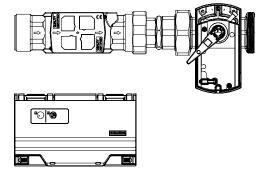
The Intelligent Valve must be installed in the return for optimum performance. The components are subject to less wear and tear due to the lower temperatures.


Symbol in catalogs and application descriptions	Symbol in diagrams
	There are no standard symbols for PICVs in the diagrams

We recommend installing a filter or strainer, e.g. ALX.., in the flow to the heat exchanger. This increases the reliability and life cycle of the Intelligent Valve.

The flow sensor and control valve can be installed separately:

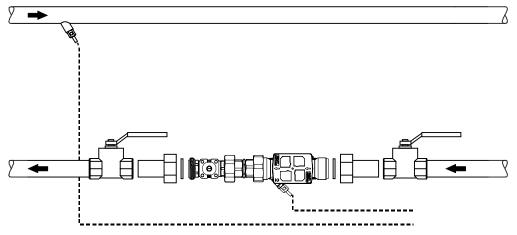

Threaded versions: In general, note that the torque of the threading is very high (75...500 Nm).


!	NOTICE
	DN 15, DN 32, and DN 50
	Please note that the insertion part of the fitting is bonded to the flow sensor and cannot be removed!
	The fitting must remain on the flow sensor.

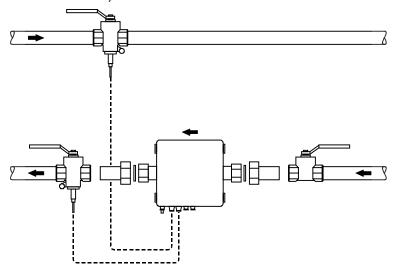
The Intelligent Valve is assembled at the mounting location. No adjustments, with the exception of configuring with the ABT Go app (see Commissioning [\rightarrow 23]) nor special tools are required. Separate mounting instructions are included with the valve and flow sensor.

Mounting positions

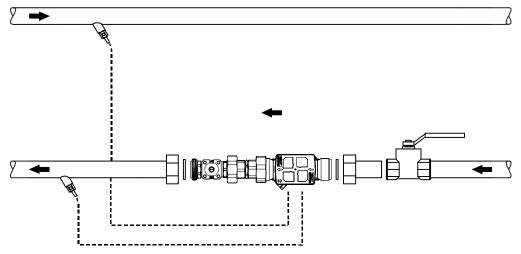
Mount the flow sensor in the return if the media temperatures exceed 90 °C. If not possible, mount the Intelligent Valve controller remotely from the flow sensor and use the wall-mount plate EZU-WA.

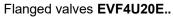


Mounting the temperature sensors

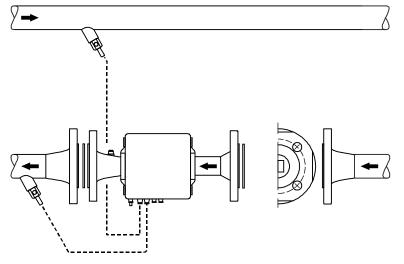

Threaded valves EVG4U10E..

The EVG.. threaded valves are supplied with direct immersion temperature sensors EZU10-2615.


The sensors with the M10x1 threaded connection can be directly immersed in the flow sensor. The second temperature sensor is also directly immersed with the WZT-G10 welding sleeve (available as accessory).



As an alternative, the sensors can be immersed directly in off-the-shelf ball valves with integrated measuring points (e.g. Siemens WZT-K.. / Jumo 902442/11) or t-pieces (e.g. Jumo 902442/31).


The brass protective pockets EZT-M40 are available for mounting with protective pockets.

The EVF.. flanged valves include the temperature sensors EZU10-10025 for installing in the protective pockets EZT-S100 (also included).

Welding sleeves must be planned on the construction side (e.g. WZT-G12) – Installation example with protective pocket.

The device has only a simple user interface. Siemens ABT Go app is used to actually commission the device.

ABT Go App (Version 3.3.1 or later)

The Siemens ABT Go app is available in iOS and Android versions in the corresponding app stores and can be used on smartphones and tablets. It connects directly over WLAN. The Intelligent Valve's own WLAN button activates the device's WLAN access point.

The following are the most important setting parameters for commissioning the Intelligent Valve:

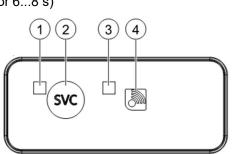
Parameter	Value range	Description	Factory setting	Access level
Valve design	 2-port valve. 3-port valve	Selection for controlling a 2-port or 3-port valve.	2-port valve.	Measuring and control technician
Control function	 Dynamic control valve Differential pressure controller Flow temperature controller Outside temperature- dependent flow temperature controller 	See Use [→ 2]	Dynamic control valve	Measuring and control technician
Control mode	Volume flow controlPosition controlOutput control	See Control modes as dynamic control valve $[\rightarrow 4]$	Volume flow control	Measuring and control technician
V॑ _{max}	30100 %	Maximum volume flow applicable to all control modes. It is used for hydraulic balancing of the consumer. Can be set in the ABT Go app in the units m ³ /h, l/h, l/min or l/s.	Active 100 %	Installer
Ů _{min}	2.520 %	Minimum volume flow applicable to all control modes. Can be set in the ABT Go app in the units m ³ /h, l/h, l/min or l/s.	Inactive	Installer
Setpoint source	 Terminal BACnet IP (remote) Modbus RTU local 	Selection whether to interpret input X1 as the setpoint, whether it originates from a BACnet or Modbus network, or whether it is set (e.g. in the event of differential pressure control) locally to a fixed value.	Terminal	Measuring and control technician
Setpoint signal type	 010 V 210 V 420 mA 	Signal type pending at input X1	010 V	Measuring and control technician
Actual value parameter	 Position Volume flow 0V₁₀₀ Power Primary flow temperature Primary return temperature Temperature difference flow/return 	Selection whether the analog signal on output X2 represents the valve position or volume flow. In the event of volume flow, $0V_{100} = 0100$ %.	Deactivated	Measuring and control technician
Actual value signal type	 010 V 210 V 420 mA 	Signal type pending at output X2	-	Measuring and control technician
Flow charac- teristics	 Linear Equal percentage Heat exchanger optimized 	The flow characteristic flow can be selected in the volume flow control mode.	Linear	Measuring and control technician

User interface on the device

Service LED [1]

• Indicates the operating state (see table below)

Service button [2]


- Trigger wink
- Override setpoint and set V_{max} for 10 minutes (press for 3...6 s)
- Start flow test (press for 6...8 s)

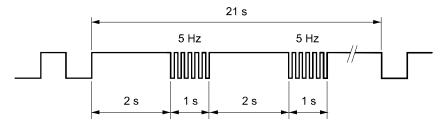
Communication LED [3]

• Indicates the communication state (see table below)

WLAN button [4]

• Enable integrated WLAN Access Point for 10 min (press for ca. 0.5 s)

- Reset device to factory settings
 - Press both buttons ([2], [4]) at the same time for 10...15 s: The LEDs ([1], [3]) slowly flash orange for 10 s

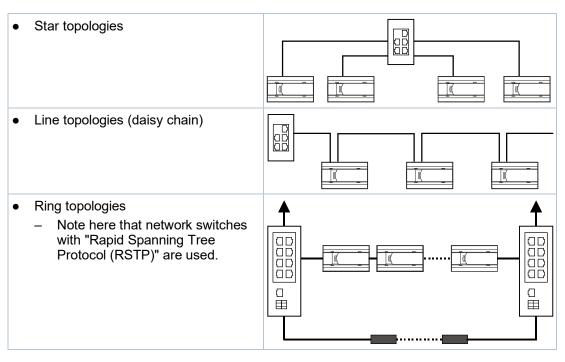

You can cancel the process during these 10 seconds by releasing the buttons.

- After flashing for 10 s, the LEDs flash quickly for ca. 5 s and the reset is triggered by releasing the buttons.
- The controller returns to normal operation without resetting if you continue to press the buttons.

 NOTICE
All configurations, network settings, commissioning parameters, and passwords are set to factory settings!
This action cannot be cancelled nor reversed.

Service LE	D		SVC
Color	Blinking pa	ttern	Description
	On	Off	
White	Continuous	-	Device starting up
Green	0.5 s	0.5 s	Device in configuration mode
	4.75 s	0.25 s	Normal operation
	0.25 s	0.25 s	Stop local forced control
Blue	0.5 s	0.5 s	Local forced control – Flow test
Yellow	0.5 s	0.5 s	Local forced control – Continuous volume flow \dot{V}_{max}
Red	0.5 s	0.5 s	 Fault input/output or component: Flow sensor Wrong direction of flow Air in sensor Sensor connection faulty Temperature sensors Damaged cable Short circuit Actuator Blocked Faulty connection Setpoint input terminal Faulty connection Invalid signal
	2 s / 5 Hz	- / 5 Hz	Flashing to wink command for physical device identification ¹⁾
	Continuous	-	Fault
Orange	0.5 s	0.5 s	Reset to factory settings being prepared
	0.1 s	0.1 s	Reset to factory settings is triggered
-	-	-	Undervoltage

1)


Communication LED			ę
Color	Blinking pattern		Description
	On	Off	
-	-	-	No communicationEthernet cable unpluggedDevice starting up
Blue	0.5 s	0.5 s	WLAN enabled
	Continuous	-	WLAN data transmission
Green	0.5 s	0.5 s	TCP/IP communications error – IP address not available
	Continuous	-	TCP/IP data transmission ¹⁾
Purple	0.5 s	0.5 s	TCP/IP data transmission with Siemens Building Operator (Cloud)
Orange	Continuous	-	Modbus connected and configured – no data transmission via EIA-485
	0.5 s	0.5 s	Active communication via EIA-485
	0.5 s	0.5 s	Reset to factory settings being prepared ²⁾
	0.1 s	0.1 s	Reset to factory settings is triggered

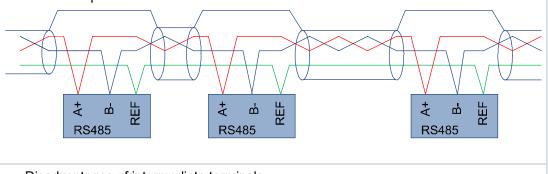
¹⁾ With a daisy chain layout, it is only possible to check if a neighbour device is connected – the chain to the switch/router is not ensured and may even be broken.

²⁾ Applies only if SVC LED also flashes synchronously.

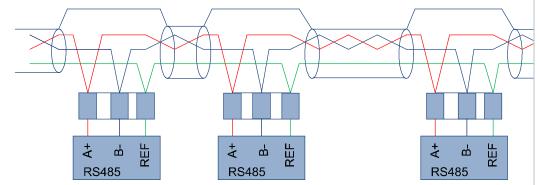
Network integration BACnet IP

The Intelligent Valve can be integrated over TCP/IP in a BACnet IP network. The device supports:

Up to 20 Intelligent Valves can be used in a BACnet segment.


A complete list of supported BACnet data points is included in the document "Intelligent Valve – BACnet Objects" (Product documentation [\rightarrow 16]).

ABT Go app configures the network parameters (IP address, subsegment, etc.).


Network integration Modbus RTU

The Intelligent Valve can be integrated over EIA-485 in a Modbus RTU network. Although the RS485 standard is simple and well-proven, important requirements and experience must be taken into account. This starts with the selection of the topology:

- Best: Individual line
 - The best topology is a single line (line topology)m with the bus cable connected directly tot he individual devices (daisy chain). This type of connection has the fewest problems.

- Disadvantages of intermediate terminals
 - Connecting network devices via intermediate terminals and stub lines opens complicated paths for reflections and harmonics to the electrical signals. It is obvious that long and non-twisted intermediate lines increase the risk of interference.

Maintenance

Control valves EVF.. and EVG.. are maintenance free.

Disposal

The device is considered an electronic device for disposal in terms of the European Directive and may not be disposed of as domestic waste.

- Use only designated channels for disposing the devices.
- Comply with all local and currently applicable laws and regulations.

Intended use

A WARNING
Intended use Improper use can result in injury as well as damage to the product or plant.
 Siemens product may only be used with user cases set forth in the catalog and associated technical documentation. User-related technical data are only guaranteed in connection with the products listed in this document. Siemens rejects any and all warranties in the event that third-party meduate are used.
 products are used. Trouble-free and safe product operation presupposes transport, storage, setup, mounting, installation, commissioning, operation, and servicing as intended. You must comply with permissible ambient conditions. Comply with all notes in the associated documentation.

Exemption from liability

The content of this document was reviewed to ensure it matches the hardware and firmware described herein. Nevertheless, differences may occur so that we are unable to fully guarantee a complete match. The information provided in this document is reviewed on a regular basis and any required corrections are added to the next edition. We always welcome suggestions on how to improve documentation.

Directive on Radio Equipment

The device uses a harmonized frequency in Europe and also meets the requirements under the Directive on Radio Equipment (2014/53/EU, previously 1999/5/EC).

Software license overview

These devices use Open Source Software (OSS); see the OSS document on the specific controller type and VVS.

All Open Source Software components used in the product (to include copyrights and licensing agreement) are available at <u>http://siemens.com/bt/download</u>.

Firmware version	OSS document		Controller
	Document ID	Title	
FW01.18.xxxxx	A6V12343374	Boodmo OSS "Intelligent Volve", V2.0	
FW01.17.xxxxx	AUV 12343374	Readme OSS "Intelligent Valve", V2.0	ASE4U10E
FW01.16.xxxxx			
FW01.15.xxxxx	AGV/11676101	Readma OSS "Intelligent Valve" V/1.2	
FW01.14.xxxxx	A6V11676101	Readme OSS "Intelligent Valve", V1.2	
FW01.13.xxxxx			

Cyber security disclaimer

Siemens provides a portfolio of products, solutions, systems and services that includes security functions that support the secure operation of plants, systems, machines and networks. In the field of Building Technologies, this includes building automation and control, fire safety, security management as well as physical security systems.

In order to protect plants, systems, machines and networks against cyber threats, it is necessary to implement – and continuously maintain – a holistic, state-of-the-art security concept. Siemens' portfolio only forms one element of such a concept.

You are responsible for preventing unauthorized access to your plants, systems, machines and networks which should only be connected to an enterprise network or the internet if and to the extent such a connection is necessary and only when appropriate security measures (e.g. firewalls and/or network segmentation) are in place. Additionally, Siemens' guidance on appropriate security measures should be taken into account. For additional information, please contact your Siemens sales representative or visit

https://www.siemens.com/global/en/home/company/topic-areas/future-ofmanufacturing/industrial-security.html.

Siemens' portfolio undergoes continuous development to make it more secure. Siemens strongly recommends that updates are applied as soon as they are available and that the latest versions are used. Use of versions that are no longer supported, and failure to apply the latest updates may increase your exposure to cyber threats. Siemens strongly recommends to comply with security advisories on the latest security threats, patches and other related measures, published, among others, under

https://www.siemens.com/cert/en/cert-security-advisories.htm.

Dimensions and weight

See Dimensions $[\rightarrow 41]$

Power supply		EVG4U10E	EVF4U20E DN 6580	EVF4U20E DN 100125	
Operating voltage		AC 24 V ~ ±20 % (19.228.8 V ~) DC 24 V = ±20 % (19.228.8 V =)			
Frequency		50/60 Hz			
Power consum	ption including connected field devices				
	Operation	5 W	6.25 W	8 W	
	Normal position	2.7 W	3.5 W	3.5 W	
	Sizing	8.5 VA	14 VA	16 VA	
Power consum	ption ASE4U10E				
	Operation	3.5 W			
	Normal position	2 W			
	Sizing	6 VA (controller without actuator!)			
Internal fuse	· · · · · · · · · · · · · · · · · · ·	Irreversible			
External fusing of supply line		• Fuse slow 610 A			
		 Circuit break 60898 	er: Max. 13 A, typ	ре В, С, D per EN	
		• Power source with current limitation of max. 10 A			

Interfaces	
Ethernet	Plugs: 2 x RJ45, screened
	Interface type: 100BASE-TX, IEEE 802.3 compatible
	Bitrates: 10/100 Mbps, autosensing
	Protocol: BACnet over UDP/IP
USB (2.0)	Plug: Micro-B
	Data rate: 1.5 Mbps and 12 Mbps
	No galvanic isolation to ground
L-bus	Baud rate: 2.4 kBaud
	Bus power: 10 mA
	Short-circuit proof: protection against faulty wiring at max. AC 24 V

Modbus RT	U interface	
Interface typ	e	EIA-485, galvanically isolated
Baud rates		9600 / 19200 / 38400 / 57600 / 76800 / 115200
	Default	19200
Internal bus	termination	120 Ω , switchable with ABT Go
Internal bus	polarization	270 Ω / 270 Ω – NOT switchable!
Cabling (only inside	building)	3-core cable
	Length	Max. 1000 m (3300 ft)
	NOTICE	The baud rate must be adapted to match the cable length.
Protection		Short-circuit proof: protection against faulty wiring at AC 24 V
Maximum nu devices (noc segment		31

Function data

Control valve	EVG4U10E	EVF4U20E
Nominal flow	See Type summary [→ 12]	
Adjustable flow as [%] of V ₁₀₀	30*	100 %
Control accuracy	±5	5 %
Permissible media	Chilled an	d hot water
Medium temperature	11	20 °C
Operating pressure p₅	1600 kPa	See Type summary [→ 12]
Differential pressure $\Delta p_{max} / \Delta p_s$	See Type summary [→ 12]	
Flow characteristic curve (Control mode "Volume flow control")	Selectable (linear, equal percentage optimized in closing range with ngl 14, compensation for heat exchanger characteristic curve)	
Leakage rate	Waterproof per 00.03 % of k _{vs} val EN 60534-4 L/1, improved class 5	
Mounting position	Upright to	horizontal
Valve body	Brass	
Blank flange	- Cast iron	
Valve stem, seat, ball	Brass	Stainless steel
Stem sealing gland	EPDM	

Actuator	EVG4U10E	EVF4U20E DN 6580	EVF4U20E DN 100125
	GLA161.9E/HR	SAX61.03/HR	SAV61.00/HR
Positioning time (at the specified nominal stroke)	90 s	30 s	120 s
Positioning force	-	800 N	1600 N
Nominal torque	10 Nm		
Nominal rotational angle	90°		-
Nominal stroke	-	20 mm	40 mm

Flow measurement		EVG4U10E	EVF4U20E	
Ultrasonic volume flow measurement		Yes		
Measuring accuracy		± 2 % of present value between 25 % and 100 % of V_{100}		
Minimum flow measurement		1 % c	f V ₁₀₀	
Material of measuring	ı pipe			
	DN 1550	Brass	-	
	DN 65		Brass	
DN 80 DN 100125		-	Nodular cast iron EN-GJS-500	
			Brass	

Temperature measurement		EVG4U10E	EVF4U20E	
Measuring accuracy absolute temperature		±0.6 °C at 20 °C		
			at 60 °C	
		(Pt1000 EN60)751, class B)	
Measuring accuracy to	emperature difference	±0.2 K at	ΔT = 20 K	
Resolution		0.08	5 °C	
Prototype test certificate Module B per MID		A0445/2112/2007	DE-06-MI004-PTB011	
Permissible operating pressure for direct immersion sensor		PN 16	-	
Housing for direct immersion sensor DS M10x1, Ø 5.2 x 26 mm, cable length 1.5 m		Stainless steel	-	
Protective pocket G $\frac{1}{2}$ B", Ø 6.2 x 92.5 mm for temperature sensors Ø 6 x 105 mm				
Permissible operational pressure		PN 25		
	Material	Brass	Stainless steel	

Inputs

The inputs are protected against incorrect wiring AC/DC 24 V.

Setpoint signal input, analog (input X1) in control function "Dynamic control valve" representing 0100 % in control function "Flow temperature controller" representing 3100 °C				
Type Range (over range) Resolution Input resistance (Rin)				
AI 010 V	010 V (-111 V)	1 mV	100 kΩ	
AI 010 V	210 V (111 V)	1 mV	100 kΩ	
AI 420 mA (020 mA) 2.3 μA <460 Ω				
Open connection: Negative volta	Open connection: Negative voltage -3.1 V (line failure detection)			

Signal input, analog (input X1)

in control function "Outside temperature-dependent flow temperature controller"

Туре	Range (over range)	Resolution	Input re (R _{in})	sistance
AI (LG-)Ni1000		55 mK 0.099 °F		-
AI Pt1000 (385/EU)	-40150 °C (-45160 °C) -40302 °F (-49320 °F)	85 mK (CIOR -50 °C) 0.153 °F	.400	-
AI Ni1000 DIN	-	45 mK 0.081 °F		-
AI 010 V	010 V (-111 V)	1 mV DC 0.310 V = -47	750 °C	100 kΩ

Position feedback actuator, analog (Input U)				
Туре	Range (over range)	Resolution	Input resistance (R _{in})	
AI 010 V	010 V (-111 V)	1 mV	100 kΩ	
Open connection: Negative voltage -3.1 V (line failure detection)				

Temperature measurement for power measurement, analog (Inputs B7, B26)			
Type Range (over range) Resolution			
AI Pt1000 (385/EU)	-40150 °C (-45160 °C) -40302 °F (-49320 °F)	85 mK 0.153 °F	

Temperature measurement, analog (Input X3) in control functions "Flow temperature controller" and "Outside temperature-dependent flow temperature controller"				
Type Range (over range) Resolution				
AI Pt1000 (385/EU)		85 mK 0.153 °F		
AI (LG-)Ni1000	-40150 °C (-45160 °C) -40302 °F (-49320 °F)	55 mK 0.099 °F		
AI Ni1000 DIN		45 mK 0.081 °F		

Voltage measurement, analog (Input X3) in control functions "Differential pressure controller"				
Type Range (over range) Resolution				
AI 010 V (-111 V) 1 mV 100 kΩ				
AI 010 V standard 0100 % (-10110 %) 1 mV				
Open connection: Negative voltage -1.5 V, 8 µA (line failure detection)				

Flow measurement, digital (Input DU)

Use only the flow sensors specified in the data sheet.

Outputs

The outputs are protected against short circuiting and incorrect wiring AC/DC 24 V.

Position feedback, analog (output X2)				
Туре	Range (over range)	Resolution	Output current / output impedance	
AO 0-10 V	010 V (010.5 V)	11 mV	Max. 1 mA	
AO 420 mA	420 mA (420 mA)	22 μΑ	<650 Ω	

Signal output actuator, analog (Output Y)

eight output totation, analog (output i)				
Туре	Range (over range)	Resolution	Output current	
AO 0-10 V	010 V (010.5 V)	11 mV	Max. 1 mA	

Switching output relay Q1 (connection terminals Q13, Q14)		
Type Relay		
Switching voltage	AC 24 V / DC 30 V	
Permissible load current 100 mA		

Supply for field devices (outputs V \approx)		
Output voltage AC / DC 24 V		
Permissible load current 10 A		
Protection against overload None		

WLAN interface				
Interface type		Wire	less access point	
Supported standards		IEEE 802.11b/g/n		
Frequency band		2.4 GHz		
WLAN channels		3	3	
Transmission power		17 dl	3m	
Distance (unobstructed field)	Min. 5 m (16 ft)		
Device pairing		Activation/deactivation with service button Automatic switch off after 10 minutes if no WLAN client is connected.		
Default SSID and WLAN pas	ssword			
	SSID	<asi< td=""><td>N>_<series no.=""></series></td><td></td></asi<>	N>_ <series no.=""></series>	
		Exar	siemens Switzerland ASN Date / series letter /	04A0000001000 03162868 Hex I-5 T 55, IP54
			series no. SSID	ASE4U10E_0000001000
	Deserveral	400.4		
	Password		5678 word is preset and can	not be changed

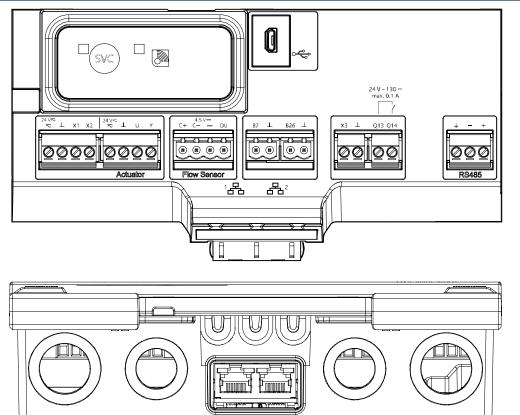
Conformity

Protection class		
Housing from vertical to horizontal (see Mounting $[\rightarrow 21]$) IP 54 as per EN 60529		
Insulation class		As per EN 60730
AC / DC 24 V		111

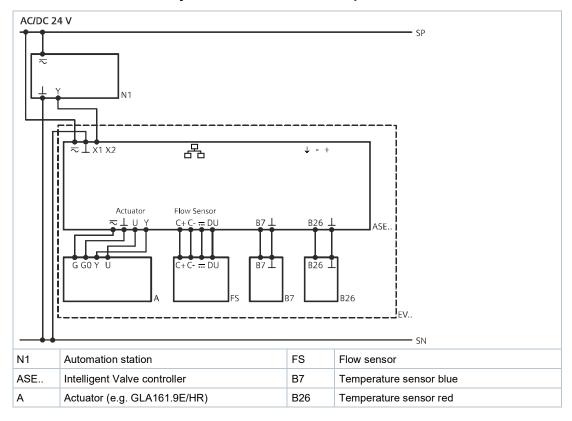
Ambient conditions		
Operation		as per EN 60721-3-3
	Climatic conditions	Class 3K5
	Mounting location	Indoors (weather-protected)
	Temperature (general)	-5< 55 °C
	Humidity (non-condensing)	595 % r.h.
Transportation		as per EN 60721-3-2
	Climatic conditions	Class 2K3
	Temperature	-2570 °C
	Humidity	< 95% r.h.
Storage		Per IEC 60721-3-1
	Climatic conditions	Class 1K5
	Temperature	-555 °C
	Humidity	595 % r.h.
Max. media te	mperature when mounted on valve	120 °C

Directives, standards	and approvals	
Product standards		EN 60730-x
Electromagnetic compatibility (field of use)		For residential, commercial, and industrial environments
EU conformity (CE)		
	EVG / EVF	A6V11692721 ¹⁾
	ASE4U10E	A6V11664685 ¹⁾
	AVG4EVAG / AVF4E	A6V11692707 ¹⁾
	GLA161.9E/HR	A6V101082021 ¹⁾
	SAV61.00/HR	A6V10455624 ¹⁾
	SAX61.03/HR	A6V10321559 ¹⁾
	EZU10	A6V11692688 ¹⁾
RCM Conformity		
	EVG / EVF	A6V11694334 ¹⁾
	ASE4U10E	A6V11692702 ¹⁾
	AVG4EVAG / AVF4E	A6V11692730 ¹⁾
	GLA161.9E/HR	A6V101082027 ¹⁾
	SAV61.00/HR	A6V10455626 ¹⁾
	SAX61.03/HR	A6V10402431 ¹⁾
EAC compliance		Eurasian compliance for all EVG/EVF
WiFi		
	China	CMIIT ID 2020 DJ 3810
	Korea	KC R-R-S7M-ASE4U10E
	Singapore	Complies with IMDA Standards DB01752

Environmental compatibility

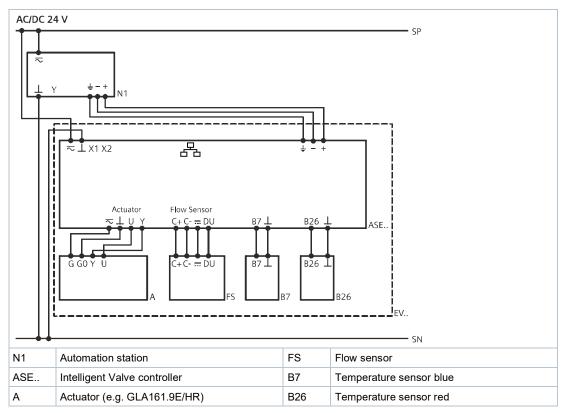

The product environmental declarations below contain data on environmentally compatible product design and assessments (RoHS compliance, material composition, packaging, environmental benefit, and disposal).

anoo, materiai compeenion, p	and ging; entreminental zeneni, and dispersity.
ASE4U10E	A6V11684717 ¹⁾
AVG4EVAG	A6V11654066 1)
AVF4E	A6V11654064 1)
ALF4E	A6V11654081 ¹⁾
EZU10	A6V11684742 ¹⁾
GLA161.9E/HR	A6V101033533 ¹⁾
SAV61.00/HR	A6V10450170 ¹⁾
SAX61.03/HR	A6V10691442 ¹⁾
VVF42KC	A6V10824366 1)
EZT	A6V11684744 ¹⁾
EZU-WA, EZU-WB	A6V11654200 1)

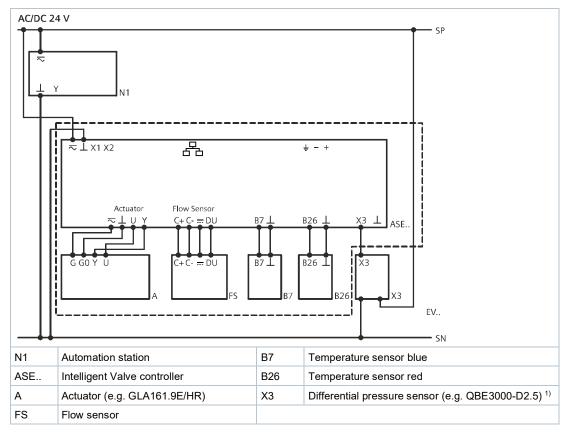

¹⁾ Documents can be downloaded at <u>http://www.siemens.com/bt/download</u>

Connection diagrams

Connection terminals

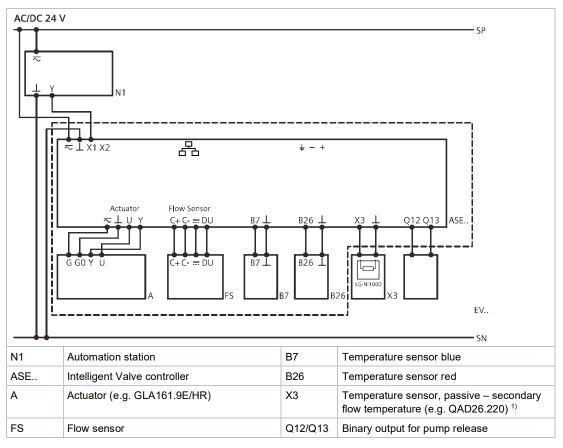


Connecting thread	Description	Terminal
1, 2 Ethernet	2 x RJ45 interface for 2-port Ethernet switch	
	Power SELV/PELV AC/DC 24 V	\sim
	System zero	\perp
	Setpoint input Intelligent Valve: DC 0/210 V; 420 mA (Passive or active temperature sensor in the control function "Outside temperature-dependent flow temperature controller")	X1
	Actual value output Intelligent Valve: DC 0/210 V; 420 mA	X2
USB	USB interface	●∕_ →
Actuator	Field supply AC 24 V for actuator	$\overline{\sim}$
	System zero	\perp
	Position feedback actuator DC 010 V	U
	Positioning signal actuator DC 010 V	Y
Flow sensor	L-bus potential	C+
	L-bus neutral (Galvanically insulated)	C-
	Power flow sensor (DC 4.5 V)	
	Pulse input	DU
Inputs analog	Passive temperature input	B7
	System zero	\perp
	Passive temperature input	B26
	System zero	\perp
	Universal input (DC 010 V / passive temperature sensor input)	X3
	System zero	\perp
Outputs	Switching output AC 24 V; DC 30 V; 0,1 A	Q13
		Q14
RS485	EIA-485 interface (Modbus RTU)	÷
	Supported from software version 1.18.xxxxx	-
		+
Service	Service button	SVC
Display	Operation LED	
Com/WLAN	WLAN button	(:-
Display	Communication LED	

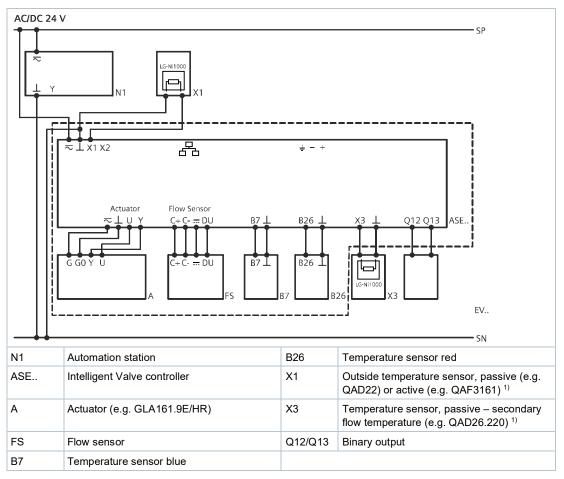


For the control function "Dynamic control valve" – Setpoint source terminal

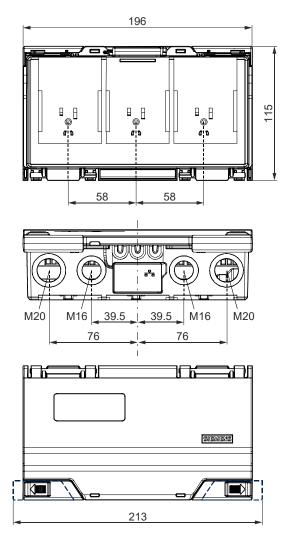
For the control function "Dynamic control valve" - Setpoint source Modbus

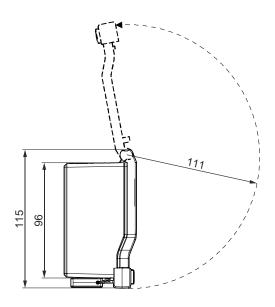


For the control function "Differential pressure controller" - Setpoint internal


¹⁾ Temperature sensors are not included; they have to be ordered separately.

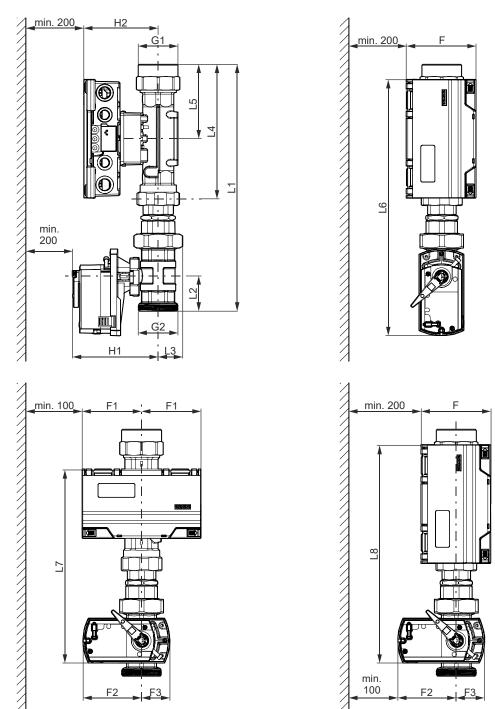
For the control function "Flow temperature controller" - Setpoint source terminal


¹⁾ Temperature sensors are not included; they have to be ordered separately.

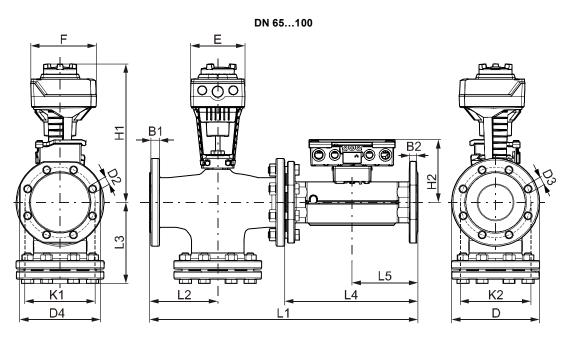

For the control function "Outside temperature-dependent flow temperature controller"

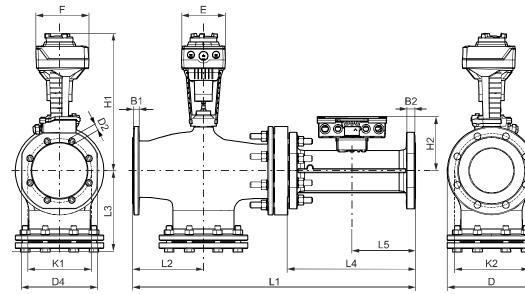
¹⁾ Temperature sensors are not included; they have to be ordered separately.

Intelligent Valve controller, ASE4U10E



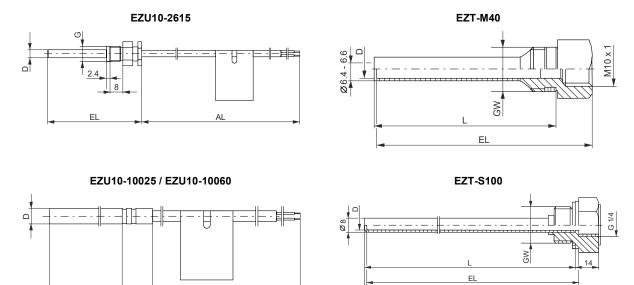
Dimensions in mm


Threaded, EVG4U10E..


Dimensions in mm

Valve type	F	F1	F2	F3	G 1	G2	H1	H2	L1	L2	L3	L4	L5	L6	L7	L8	kg
EVG4U10E015					G 1	I B	130	110	232.5	43.5	21.5	115	60	382		321	2.5
EVG4U10E020					G 1	¼ B	130	2.5	273	45	26	130	65	351.5	_ 1)	291	2.9
EVG4U10E025	445	00	98	40	G 1	½ B	132.5		302		29	150	75	377	- /	317	3.5
EVG4U10E032	115	98	98	46	G 2	2 B	136	116	254.5	50	35	145	77.5	380		320	3.7
EVG4U10E040					G 2	¼ B	142	142 155	410	58	40.5	000	123	423	324		6.3
EVG4U10E050					G 23	¾ B	155		358.5	62.5	49	223		367	367	, -	7.0

¹⁾ Arrangement not possible


DN 125

Dimensions in mm

Valve type	B1	B2	D	D2	D3	D4	Е	F	H1	H2	K1	K2	L1	L2	L3	L4	L5	kg			
EVF4U20E065	17	19	184	18 (4x)	19 (4x)	170			316	136	145	145	591	145	174	300	150	30.3			
EVF4U20E080	19	18	200	19 (8x)		185	124	450	310	143	160	160	611	155	186	300	150	40.9			
EVF4U20E100	20	23	220	10 (9x)	19 (8x) 210	040		124	124	124	150	375	151	100	180	711	175	206	260	100	61.6
EVF4U20E125	15	23	250	19 (8x)		210			388	154	180	210	800	200	228	360	180	81.6			

Temperature sensors EZU.., protective pockets EZT..

AL

Dimensions in mm

	Tempera	ture sens	ors	Protective pockets						
Туре	D	EL	G	AL	Туре	D	EL	L	GW	S
EZU10-2615	5.2	26.5	M10x1	1500	EZT-M40	5.2	50	40	G ¼	1
EZU10-10025	C	02.5		2500	EZT-S100	6.2	100	92.5	G ½	2
EZU10-10060	6 92.5	-	6000							

Revision numbers

E

Туре	Valid from rev. no.	Туре	Valid from rev. no.
EVG4U10E015 S55300-M100	A	EVF4U20E065 S55300-M106	A
EVG4U10E020 S55300-M101	A	EVF4U20E080 S55300-M107	A
EVG4U10E025 S55300-M102	A	EVF4U20E100 S55300-M108	A
EVG4U10E032 S55300-M103	A	EVF4U20E125 S55300-M109	A
EVG4U10E040 S55300-M104	A		
EVG4U10E050 S55300-M105	A		

Model info	ASN=ASE4U10E; HW=2.1.0							
Firmware revision	09.54.12.07; APP=1.18.6462; SVS-300.6.SBC=15.00; ISC=01.00							
Application software version	AAS-20:SU=SiUn; APT=HvacFnct34; APTV=2.111; APS=1							

Issued by Siemens Switzerland Ltd Smart Infrastructure Global Headquarters Theilerstrasse 1a CH-6300 Zug Tel. +41 58 724 2424 www.siemens.com/buildingtechnologies © Siemens Switzerland Ltd, 2019 Technical specifications and availability subject to change without notice.